Vector Quantization

Vector Quantization: VQVAE [1],VQVAE2 [2], VQGAN [6].

Residual Quantization: RQVAE [3]

Accelerate auto-regression: [4] [5]

Hierarchical residual quantization: VAR [7]

References

[1] Oord, Aaron van den, Oriol Vinyals, and Koray Kavukcuoglu. “Neural discrete representation learning.” arXiv preprint arXiv:1711.00937 (2017).

[2] Razavi, Ali, Aaron van den Oord, and Oriol Vinyals. “Generating diverse high-fidelity images with vq-vae-2.” Advances in neural information processing systems. 2019.

[3] Lee, Doyup, et al. “Autoregressive Image Generation using Residual Quantization.” arXiv preprint arXiv:2203.01941 (2022).

[4] Bond-Taylor, Sam, et al. “Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes.” arXiv preprint arXiv:2111.12701 (2021).

[5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, William T. Freeman, “MaskGIT: Masked Generative Image Transformer”, arXiv preprint arXiv:2202.04200.

[6] Patrick Esser, Robin Rombach, Björn Ommer, “Taming Transformers for High-Resolution Image Synthesis”.

[7] Tian, Keyu, et al. “Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction.” arXiv preprint arXiv:2404.02905 (2024).